FTEC 4004

E-payment Systems and Cryptocurrency Technologies
Tutorial 11

To Start a Journey as a Smart Contract
Programmer

WANG Xianbo
xianbo@ie.cuhk.edu.hk

Homework 5 is released

* Build your own token and start your crowdsale!
* Only need to be able to read and understand Solidity code.
* Don’t need to write the whole code: “fill in the blanks”

// you can transfer tokens owned by you to others
function transfer(address , uintl6) public override returns (bool 4
require(balances[msg.sender] >= tokens);
balances[msg.sender] = /* TODO */;
balances[to] = /* TODO */;
emit Transfer(msg.sender, to, tokens);
return true;

Overview of today’s topic

e Resources that can help you become a smart contract programmer
* A basic intro of Solidity programming language
* Demo: Helloworld Smart Contract

Smart Contract Developer?

Personal opinion:
* Always good to master one more programming language.

* Not so many people know smart contract coding. Can differenciate
yourself in the job market.

* [t’s also a “risky” path. Most smart contract companies/projects are
at small scale or are start-ups. It may not last long.

* Blockchain techniques evolve fast, you need to learn fast.
* The “golden age” has gone. Maybe there will be a 2nd wave?

* Smart Contract Developer Salaries and Future Growth?:
https://www.reddit.com/r/ethdev/comments/9mihiu/smart contract developer salaries and future/

https://www.reddit.com/r/ethdev/comments/9mihiu/smart_contract_developer_salaries_and_future/
https://www.reddit.com/r/ethdev/comments/9mihiu/smart_contract_developer_salaries_and_future/

Cut the ... Where can | start?

(&) & ethereum.org/!

Ethereum Individuals v Developers v Enterprise Search Q O @ Languages

More web based learning experiences for ethereum

CryptoZombies Ethernauts Remix

7 $

remix

Learn Solidity building your own Complete levels by hacking smart Ethereum IDE and tools for the web
Zombie game contracts

ChainShot ConsenSys Academy

Quick Intro for Solidity Programming

What does it look like?
* JavaScript-alike

pragma solidity >=0.4.16 <0.7.0;

contract SimpleStorage {
* Object-oriented uint storedData;

e Statically-typed function set(uint x) public {
storedData = x;

}

function get() public view returns (uint) {
return storedData;

}

Version Pragma

* First line of a smart contract, declare expected compiler versions

pragma solidity >=0.4.16 <0.7.0;

* The compiler will issue an error if the version checking fails.

* Solidity standards are moving fast, major versions (e.g. 0.6.x and
0.5.x) have many differences that are not backwards-compatible.

* This tutorial is based on 0.6.6 (latest is 0.8.4, it evolves fast)

When deploying contracts, you should use the latest released version of Solidity. This is because
breaking changes as well as new features and bug fixes are introduced regularly. We currently use a
0.x version number [to indicate this fast pace of change](https:/semver.org/#spec-item-4).

Import & Comments

* As many other languages, you can import other source code into
current source. Useful for modularizing your code

import "filename";

* Single line and multiline comments (same as C/C++)

// This is a single-line comment.

/*

nis 1s.a
multi-line comment.
%/

Contract

* Like class in most object-oriented languages.

e Each contract can contain declarations of State
Variables, Functions, Function Modifiers, Events, Struct

Types and Enum Types.
e Contracts can inherit from other contracts.

contract HelloFTEC4004 is HelloWorld {

State Variables

e State variables are
permanently stored in
contract storage

* Smart Contract maintains a
key-value storage.

e Ethereum blockchain store
the most recent state of
each contract

* Transactions between
contracts cause state
change

pragma solidity >=0.4.0 <0.7.0;

contract SimpleStorage {
uint storedData; // State variable

[/ s

Data Types

Booleans Integers

int / uint : Signed and unsigned integers of various sizes. Keywords

bool : The possible values are constants true and false . uints8 to uint256 in steps of 8 (unsigned of 8 up to 256 bits) and

int8 to int256 . uint and int are aliases for uint256 and int256 ,

Operators: respectively.
. . Operators:

e ! (logical negation)
e && (logical conjunction, “and”) e Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)
o || (Iogical disjunction, “or”) e Bitoperators: &, |, ~ (bitwise exclusive or), ~ (bitwise negation)

: o Shift operators: left shift), right shift
o | == (equallty)) P . << (), >> (rig)

) i e Arithmetic operators: +, -,unary -, %, /, % (modulo), s

e = (inequality) (exponentiation)

Overflow/Underflow: uint256(0) - uint256(1) == 2%%256 - 1

Division returns integer: int256(-5) / int256(2) == int256(-2)

Data Types

Address

address : Holds a 20 byte value (size of an Ethereum address).
Value e.g. 0xEOf5206BBD039e7b0592d8918820024e2a7437b9

Operations

<address>.balance (uint256):
balance of the Address in Wei
<address payable>.transfer(uint256 amount) :

send given amount of Wei to Address, reverts on failure, forwards 2300 gas stipend, not
adjustable

<address payable>.send(uint256 amount) returns (bool) :

send given amount of Wei to Address, returns false on failure, forwards 2300 gas stipend,

not adjustable

More Data Types

Structs Arrays

struct Voter { // Struct uint[] x;
uint weight; Voter[] voters;
bool voted; x.push(3):
address delegate; 1 2

TiRE vare: int count = voters.length;|

Mappings (hash tables)

mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;

Units

Supported units in Solidity

assert(l wei == 1):

assert(1l szabo ==

assert(1 finney == 1el5);

assert(l ether ==

le12):

1e18);

Unit

wei

Kwei (babbage)
Mwei (lovelace)
Gwei (shannon)
microether (szabo)
milliether (finney)

ether

Wei Value

1 wei

1e3 wei

1e6 wei

1e9 wei

1e12 wei

1e15 wei

1e18 wei

Wei

1

1,000

1,000,000
1,000,000,000
1,000,000,000,000
1,000,000,000,000,000

1,000,000,000,000,000,000

Some Special Variables

e block.number (uint): current block number
e block.timestamp (uint): current block timestamp as seconds since unix epoch
e gasleft() returns (uint256) : remaining gas

e msg.data (bytes calldata): complete calldata

e msg.sender (address payable): sender of the message (current call)]

e msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)

e msg.value (uint): number of wei sent with the message]

e now (uint): current block timestamp (alias for block.timestamp)
e tx.gasprice (uint): gas price of the transaction
e tx.origin (address payable): sender of the transaction (full call chain)

Functions

* Functions can be invoked
externally (by wallets or by
other contracts) or internally (by
code in the same contract)

* Functions definition includes
arguments and returns.

pragma solidity >=0.4.0 <0.7.0;

contract SimpleAuction {

function bid() public payable { // Function
Ll
}

pragma solidity >=0.4.16 <0.7.0;

contract Simple {
function arithmetic(uint _a, uint _b)
public
pure
returns (uint o_sum, uint o_product)

return (_a + b, _a x _b);

Function Modifiers

* function (<parameter types>) finternal | external}
[pure | constant|view | payable] [returns (<return types>)]

* function types are by default internal
e contract functions are by default public

* Visibility summary:

* public - all can access

* external - cannot be accessed internally, only externally

* jnternal - only this contract and contracts deriving from it can access
* private - can be accessed only from this contract

* (each classifier classifies a subset of the former)

Visibility of Functions

* Public functions can be either called internally or via messages.

e External functions can be called from other contracts and via tx’s.
e they cannot be called internally (i.e. f() does not work, but this.f() works).

* Internal functions can only be accessed internally (from within the
current contract or contracts deriving from it), without using this.

* Private functions are only visible for the contract they are defined
in and not in derived contracts.

Function Types

* View function: not modifying state, but only read state variables

contract C {
function f(uint a, uint b) public view returns (uint) {
return a x (b + 42) + now;
¥
¥

* Pure function: neither read nor modify state variables

contract C {
function f(uint a, uint b) public pure returns (uint) {
return a x (b + 42);

E

Function Types

* Payble Function: only function with payble modifier will accept ether
transaction.

e Receive Ether Function receive() external payable {

* The function that is executed on plain Ether transfers (e.g.
via .send() or .transfer()).

* At most one per contract. No arguments, no returns.

e Fallback Function fallback() external payable {

e Executed on a call if no other matching functions.
* At most one per contract. No arguments, no returns.

Events

Logging in Solidity are implemented with events.

pragma solidity >=0.4.21 <0.7.0;

contract SimpleAuction {
event HighestBidIncreased(address bidder, uint amount); // Event

function bid() public payable {

Il i
emit HighestBidIncreased(msg.sender, msg.value); // Triggering event

Control Structures

Most of the control structures from JavaScript are available in Solidity except for switch and

goto . So thereis: if , else, while, do, for , break , continue , return, ? : ,With the usual

semantics known from C or JavaScript.

contract Loop {
function loop() public {
// for loop
for (uint i = 0; i < 10; i++) {
TR CiE=—N2)
// Skip to next iteration with continue
continue;

Iy

IR (CIRE==NE]
// Exit loop with break
break;

}

// while loop

uint 1;

while (i < 10) {
i++;

¥

Error Handling

require

The require function should be used to ensure valid conditions that cannot be detected until
execution time. This includes conditions on inputs or return values from calls to external contracts.

revert

The revert function is another way to trigger exceptions from within other code blocks to flag an
error and revert the current call. The function takes an optional string message containing details

about the error that is passed back to the caller.

contract VendingMachine {
function buy(uint amount) public payable {

if (amount > msg.value / 2 ether)
revert("Not enough Ether provided.");
// Alternative way to do it:
require(
amount <= msg.value / 2 ether,
"Not enough Ether provided."
);
// Perform the purchase.

Low Level Data Structure

State State'
14c5f8ba: 14c5f8ba:
- 1024 eth : - 1014 eth
Transaction
bb75a980: From: bb75a980:
- 5202 eth 14c5f88a - 5212 eth
if contract.storage[tx.data[0]): To: If lcontract.storage(tx.data[0]]:
contract.storageltx.data[0]] = tx.data[1] bb75a980 contract.storage[tx.data[0]] = tx.data[1]
; , 235235, , ..
[0, 235235, 0, ALICE % Valuoe. % [0, 235235, CHARLIE, ALICE
1
892bf92f: Data: 892bf92f:
-0 eth 2, -0 eth
send(tx.value / 3, contract.storage(0]) CHARLIE send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage[1]) S - send(tx.value / 3, contract.storage[1])
send(tx.value [3, contract.storage[2]) 9. send(tx.value / 3, contract.storage[2])
30452fdedb3d [ALICE, BOB, CHARLIE]
[ALICE, BOB, CHARLIE] 7959f2ceb8al
4096ad65: 4096ad65:
- 77 eth - 77 eth

Development Environment

 Remix IDE: Browser-based IDE for developing Ethereum contracts.
* https://remix.ethereum.org/
* No setup, ready-to-use, nice code editor.
* Support debug, deploy, testing, code checking, etc., all in browser.

* Truffle: Ethereum development framework (console-based)
e https://github.com/trufflesuite/truffle
« Command line tools, powerful, suitable for advanced users.

https://remix.ethereum.org/
https://github.com/trufflesuite/truffle
https://remix.ethereum.org/
https://github.com/trufflesuite/truffle

Smart Contract Development Demo

References

* Solidity Document, https://solidity.readthedocs.io/, where some
sample codes in my slides are from.

* Ethereum Developer Resources, https://ethereum.org/developers/,
recources listed on Ethereum official website.

* Learn to Code Blockchain DApps By Building Simple Games,
https://cryptozombies.io/, strongly recommended as a start point to
learn Solidity coding.

* The Ethernaut - Smart Contract Wargame,
https://ethernaut.openzeppelin.com/, strongly recommended if you
want to learn more about smart contract security.

https://solidity.readthedocs.io/
https://ethereum.org/developers/
https://cryptozombies.io/
https://ethernaut.openzeppelin.com/
https://solidity.readthedocs.io/
https://ethereum.org/developers/
https://cryptozombies.io/
https://ethernaut.openzeppelin.com/

Q&A

Topic for Next Week: Deployment & Security Considerations

