
FTEC 4004
E-payment Systems and Cryptocurrency Technologies

Tutorial 11
To Start a Journey as a Smart Contract

Programmer
WANG Xianbo

xianbo@ie.cuhk.edu.hk



Homework 5 is released

• Build your own token and start your crowdsale!
• Only need to be able to read and understand Solidity code.
• Don’t need to write the whole code: “fill in the blanks”



Overview of today’s topic

• Resources that can help you become a smart contract programmer
• A basic intro of Solidity programming language
• Demo: Helloworld Smart Contract



Smart Contract Developer?

Personal opinion:
• Always good to master one more programming language.
• Not so many people know smart contract coding. Can differenciate

yourself in the job market.
• It’s also a “risky” path. Most smart contract companies/projects are

at small scale or are start-ups. It may not last long.
• Blockchain techniques evolve fast, you need to learn fast.
• The “golden age” has gone. Maybe there will be a 2nd wave?

* Smart Contract Developer Salaries and Future Growth?:
https://www.reddit.com/r/ethdev/comments/9mihiu/smart_contract_developer_salaries_and_future/

https://www.reddit.com/r/ethdev/comments/9mihiu/smart_contract_developer_salaries_and_future/
https://www.reddit.com/r/ethdev/comments/9mihiu/smart_contract_developer_salaries_and_future/


Cut the … Where can I start?



Quick Intro for Solidity Programming

What does it look like?
• JavaScript-alike
• Object-oriented
• Statically-typed



Version Pragma

• First line of a smart contract, declare expected compiler versions

• The compiler will issue an error if the version checking fails.
• Solidity standards are moving fast, major versions (e.g. 0.6.x and 

0.5.x) have many differences that are not backwards-compatible.
• This tutorial is based on 0.6.6 (latest is 0.8.4, it evolves fast)



Import & Comments

• As many other languages, you can import other source code into 
current source. Useful for modularizing your code

• Single line and multiline comments (same as C/C++)



Contract

• Like class in most object-oriented languages.
• Each contract can contain declarations of State
Variables, Functions, Function Modifiers, Events, Struct 
Types and Enum Types. 
• Contracts can inherit from other contracts.



State Variables

• State variables are 
permanently stored in 
contract storage

• Smart Contract maintains a 
key-value storage.
• Ethereum blockchain store

the most recent state of
each contract
• Transactions between

contracts cause state
change



Data Types

Overflow/Underflow: 

Division returns integer:



Data Types
Address

Operations

Value e.g. 0xE0f5206BBD039e7b0592d8918820024e2a7437b9



More Data Types

Structs Arrays

Mappings (hash tables)



Units

Supported units in Solidity



Some Special Variables



Functions

• Functions can be invoked 
externally (by wallets or by 
other contracts) or internally (by 
code in the same contract)

• Functions definition includes 
arguments and returns.



Function Modifiers



Visibility of Functions



Function Types

• View function: not modifying state, but only read state variables

• Pure function: neither read nor modify state variables



Function Types

• Payble Function: only function with payble modifier will accept ether 
transaction.

• Receive Ether Function
• The function that is executed on plain Ether transfers (e.g. 

via .send() or .transfer()).
• At most one per contract. No arguments, no returns.

• Fallback Function
• Executed on a call if no other matching functions.
• At most one per contract. No arguments, no returns.



Events

Logging in Solidity are implemented with events.



Control Structures



Error Handling
require

revert



Low Level Data Structure



Development Environment

• Remix IDE: Browser-based IDE for developing Ethereum contracts.
• https://remix.ethereum.org/
• No setup, ready-to-use, nice code editor.
• Support debug, deploy, testing, code checking, etc., all in browser.

• Truffle: Ethereum development framework (console-based)
• https://github.com/trufflesuite/truffle
• Command line tools, powerful, suitable for advanced users.

https://remix.ethereum.org/
https://github.com/trufflesuite/truffle
https://remix.ethereum.org/
https://github.com/trufflesuite/truffle


Smart Contract Development Demo



References

• Solidity Document, https://solidity.readthedocs.io/, where some
sample codes in my slides are from.
• Ethereum Developer Resources, https://ethereum.org/developers/,

recources listed on Ethereum official website.
• Learn to Code Blockchain DApps By Building Simple Games,

https://cryptozombies.io/, strongly recommended as a start point to 
learn Solidity coding.
• The Ethernaut - Smart Contract Wargame,

https://ethernaut.openzeppelin.com/, strongly recommended if you 
want to learn more about smart contract security.

https://solidity.readthedocs.io/
https://ethereum.org/developers/
https://cryptozombies.io/
https://ethernaut.openzeppelin.com/
https://solidity.readthedocs.io/
https://ethereum.org/developers/
https://cryptozombies.io/
https://ethernaut.openzeppelin.com/


Q&A
Topic for Next Week: Deployment & Security Considerations


